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ABSTRACT

The tip vortex flow field has a significant influence on the performance

of a ship propeller. The ability to compute the tip vortex flow field would be

a valuable aid in the design of ship propellers, and in the analysis of their

performance. The present report demonstrates the feasibility of computing the

tip vortex generation process with a forward-marching computation procedure.

For the purpose of this study, turbulent flow test cases were considered. The

results of the computations were compared with experimental data from Gray et

al. (Ref. 1), and demonstrate the capability of the forward-marching procedure

to accurately compute the flow processes in the tip vortex generation. The

flow field is computed from a set of three-dimensional viscous flow equations

with no empiricism introduced for the vorticity generated and shed at the

propeller tip.
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NOMENCLATURE

c Blade chord

cp Pressure coefficient

F Force due to viscous stress (Eq. 10)

i Unit vector normal to transverse coordinate surface
n
p Primary flow direction

il, 12 Orthonormal vectors in the transverse coordinate surface

p Static pressure

R Force due to a rotating coordinate system (Eq. 10)

Re Reynolds number

U Velocity vector

U p Primary flow velocity

Us Secondary flow velocity vector

Vs Known vector field in the transverse coordinate surfaces (e.g.

the transverse component of an inviscid flow velocity vector

field)

Vt  Tangential component of the Vs- and *-contributions to the

secondary velocity at a solid boundary.

x Distance from the blade leading edge

XI, x2 , x3  Coordinates in the 1i-, 12-, and in- direction, respectively

a Angle of incidence of the blade

p Density

P0 Reference density (constant)

*Scalar potential (Eq. 3)

*Vector surface potential (Eq. 3)

nn Secondary vorticity, i.e., vorticity based on the secondary

flow within the transverse surfaces (Eq. 7)

V Gradient operator

Vs Surface gradient operator (Eq. 4)
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1. INTRODUCTION

The tip vortex flow field plays a significant role in the performance of a

ship propeller. The low pressure region found at the center of a tip vortex

may lead to cavitation. The presence of cavitation in the flow field has

serious consequences in terms of structural, acoustic and performance

considerations. A better understanding of the tip vortex generation process

and a method of analyzing the tip vortex flow field would provide valuable help

in the design of ship propellers.

The flow field in the tip region is complex, three-dimensional, and

viscous, with large secondary velocities. A qualitative picture of the tip

region flow field in a cross-section normal to the primary flow direction is

shown in Fig. 1. As can be seen here, the transverse velocity along the tip

changes direction in the vicinity of the tip vortex, a phenomenon commonly

referred to as cross-flow separation. The large secondary velocities and the

occurrence of cross-flow separation preclude the possibility of using

conventional boundary layer solution techniques to compute the tip vortex flow

field. On the other hand, a solution of the full Navier-Stokes equations that

adequately resolves the tip vortex flow field would require formidable

computational resources. A more economical approach is the use of an

approximate set of three-dimensional viscous flow equations which is applicable

to the tip vortex flow field but which does not require the resources needed

for the solution of the full Navier-Stokes equations. The parabolized

Navier-Stokes equations discussed in Section 2 represent such a set. These

equations contain in them all the physical processes of tip vortex generation

and can be solved economically by forward marching procedures.

The attractive possibility of using a forward-marching procedure '.o

compute the tip vortex generation process was first examined by Shamroth and

Briley (Ref. 2), and more recently by Lin et al. (Ref. 3) and Govindan et al.

(Ref. 4). This report provides a quantitative assessment of the validity of

this procedure for the tip vortex analysis. With the focus being on the

computation of the vortex generation process, effects of blade leading and

trailing edges and hub effects were neglected. The test cases were chosen to

allow a data comparison to be made. Thus, geometry consisted of a straight

blade with an NACA 0012 airfoil section and a rounded tip (a half-body of

revolution, see Fig. 2). The results of the turbulent flow calculations were
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compared with experimental surface pressure measurements in the tip region by

Gray et al. (Ref. 1). A brief outline of the forward-marching procedure and a

discussion of the results of the computation of the vortex generation process

are presented in this report.

2. THE FORWARD MARCHING COMPUTATION PROCEDURE

FOR SHIP PROPELLER TIP FLOW FIELDS

The forward marching computation procedure used for the solution of the

parabolized Navier-Stokes equations provides an economical and accurate method

for computing many three-dimensional viscous flow fields. This procedure,

initially developed for internal flow fields (Refs. 5-7), has been extended to

the computation of the ship propeller tip flow field. The governing equations

and the computational scheme are presented in this section. This procedure is

capable of considering both fixed and rotating coordinate systems.

Governing equations are derived through approximations made relative to a

curvilinear coordinate system fitted to and aligned with the flow geometry

under consideration. The coordinate system is chosen such that the streamwise

or marching coordinate either coincides with or is at least approximately

aligned with a known inviscid primary flow direction as determined, for

example, by a potential flow for the given geometry. Transverse coordinate

surfaces must be approximately perpendicular to solid walls or bounding

surfaces, since diffusion is permitted only in these transverse coordinate

surfaces.

Equations governing the primary flow velocity U p and a secondary

vorticity Qn normal to transverse coordinate surfaces are derived utilizing

approximations which permit solution of the governing equations as an initial-

value problem, provided reversal of the composite streamwise velocity does not

occur. Terms representing diffusion normal to transverse coordinate surfaces

(in the streamwise direction) are neglected. The pressure gradient term that

appears in the streamwise momentum equation is assumed known (for example from

an a priori potential flow solution for the geometry under consideration).

Secondary flow velocities are determined from scalar and vector surface

potential calculations in transverse coordinate surfaces, once the primary

velocity and secondary vorticity are known. With the computed velocity field,

the pressure field associated with the velocity field can be determined. For
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compressible flow, an equation is added for the density, and for high Reynolds

number flows, a turbulence model is specified.

2.1 Primary-Secondary Velocity Decomposition

In what follows, vectors are denoted by an overbar, and unit vectors by a

caret. The analysis is based on decomposition of the overall velocity vector

field U into a primary flow velocity Up and a secondary flow velocity Us.

The overall or composite velocity is determined from the superposition

U - U + us (1)

The primary flow velocity is represented as

Up = Upip (2)

where ip is a known primary flow direction determined, for example, from an

a priori potential flow solution for the geometry under consideration. A

streamwise coordinate direction from a body fitted coordinate system could be

used as an approximation to this flow direction. The primary velocity UP is

determined from solution of a primary flow momentum equation in which the

streamwise pressure gradient term is assumed known. The secondary flow

velocity Us is derived from scalar and vector surface potentials, denoted by

and *, respectively. If in denotes the unit vector normal to transverse

coordinate surfaces, if p is density, and if po is an arbitrary constant

reference density, then Us is defined by

u V 0- Vxi n + (3)

where Vs is the surface gradient operator defined by

Vs EV - tn(in.V) (4)

and where Vs is an arbitrary known vector field in the transverse coordinate

surfaces. This vector field is usually set to zero; for the tip vortex flow

analysis, however, V. is the transverse component of an inviscid flow
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velocity computed for the geometry under consideration. This choice of V.

facilitates the formulation of the boundary conditions, as will be seen in

Section 2.11. It follows that since in * Us = 0, Us lies entirely within

transverse coordinate surfaces. Equation (3) is a general form permitting both

rotational and irrotational secondary flows and will lead to governing

equations which may be solved as an initial-boundary value problem. The

overall velocity decomposition (1) can be written as

U i +v *+ 2O Vxi + v (5)
pp s p n s

2.2 Surface Potential Equations

Equations relating 0 and * with U p, p, and the secondary vorticity

component nn, can be derived using Eq. (5) as follows: From continuity, S

V-PU = 0 = V.PUpip + V-PVs5

+ VPVs + P00VVxnn (6) 0

and from the definition of the vorticity based on the secondary flow within the

transverse surfaces, Qn,

A A A * A

i n VxU = n = i VxUpi + i nVx -P Vxi
n n n p p n P n

+ in*VxVs + in.VxVs 
(7)

Since the last term in each of Eqs. (6) and (7) is zero by vector identity,

Eqs. (6) and (7) can be written as

V'0Vs = -V.PUpip - VOPVs (8)

and

i - Vxfi an -. VXU - i nVXV (9)
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Note that the term In*VxUpip in Eq. (9) is identically zero in a

coordinate system for which Ain and iP have the same direction, and would be

small if in and ip are approximately aligned. The term in.VxVs

is zero if Vs comes from a potential flow solution. In any event, given a

knowledge of Up, In, and p, the surface potentials and * can be

determined by a two-dimensional elliptic calculation in transverse coordinate

surfaces at each streamwise location. In turn, Us can be computed from Eq.

(3), and the composite velocity U will satisfy continuity. Equations for Up

and On are obtained from the equations governing momentum and vorticity,

respectively.

2.3 Streamwise Momentum

The streamwise momentum equation is given by

ip.[(pi.v)U + Vp] = lpop + ApiPR (10)

Here, p is the pressure, pF is the force due to viscous stress, and pR is the

additional force due to a rotating coordinate system:

R =-2 x U-x(w x r)

where w is the angular velocity of the coordinate system and r is the radius

vector from the rotation axis. Terms in F representing streamwise diffusion

are neglected. The pressure term in the streamwise momentum equation (10) can

be taken from a simpler analysis such as a potential flow analysis.

2.4 Secondary Vorticity

The equation governing Sn is obtained by cross differentiating each of

the transverse momentum equations:

i1 .[(pi.V)9 + Vp - pT - Pf] = 0

12.[(pi.v)i + Vp - pF - Pi] = 0 (1)
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where il and i2 are two orthonormal vectors in the transverse coordinate

surface. Eliminating the pressure in the two equations results in a single

equation for the transport of the vorticity normal to the transverse surface.

This equation has the form

PU.Van - S.VpUn = Gn + C + in-(VxpR) (12)

where a = VxU is the vorticity vector, Gn is the normal component of

a = VxpF (13)

and C is a collection of curvature terms arising from changes in orientation of

the transverse surfaces as a function of the streamwise coordinate.

2.5 Pressure Equation

While the above procedure results in a set of equations which can be

solved by forward marching, the surface pressures which are due to the pressure

field imposed upon the flow are the potential flow pressures. Since the actual

surface pressures are often of primary interest, a new estimate of the actual

surface pressure which includes viscous and secondary flow effects can be

computed from the resulting velocity field in the following manner. The

momentum equations (11) in the transverse surfaces represent components of the

momentum vector in the transverse surfaces:

I(^il"[(pU'V)U + Vp - pF - pR]) +

2 (12.[(P.V)f + Vp - pF - pR]) (14)

The divergence of this vector can be written as a Poisson equation for the

pressure p at each transverse surface:

2 = 2 a A

Vs p = Vs (pI + Pc) -x (ii.[(PU.V)U - PF - PR])ax1

(15)
_a

'JX2 (12'[(PU-V)g - PF - PiD]
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where PI is the imposed pressure, Pc is a viscous correction to the

pressure field and x, and x2 are coordinates in the il and 12 directions,

respectively. Equation (15) can be solved for the pressure correction Pc at

each computational station using Neuman boundary conditions derived from Eq. S

(14). The use of Neuman boundary conditions requires an additional parameter

which is only a function of the normal direction, Pv(X3), in order to set the

level of the pressure field. For external flows, Pv(X3) is set to match the

imposed pressure at an appropriate far field location, obtained, for example,

from an a priori potential flow solution for the geometry under consideration.

In the actual numerical solution procedure, the streamwise (x3-)

derivatives of the scalar potential (*-) velocities are not always smooth, and

their effect on the pressure field computed from Eq. (15) can be detrimental.

Therefore, the terms .-x (Vs ) that are part of the (p!U.V)U terms in Eq. 15

are neglected. This approximation leads to improved accuracy of the computed

viscous pressure field, as verified by comparison with experimental data.

2.6 The Gas Law Equation

For incompressible flow, density is a constant value and the Eqs. (10),

(12), (8), (9), and (15) form the required governing set. For compressible

flow, an additional equation relating the density to the other flow variables

is required. Such an equation is obtained from the perfect gas law

p = pRT (16)

where R is the gas constant. Assuming constant total temperature To, Eq. (16)

can be written as

p = pR(T0 - U-1 (17)2C p

where Cp is the heat capacity of the gas at constant pressure. Equation (17)
relates density, pressure, and velocity. If the total temperature assumption

is inadequate, an energy equation can be added to the system and solved coupled
with the streamwise momentum equation.

2.7 Turbulence Model

In the high Reynolds number flows addressed in this report, it is nec-

essary to specify a turbulence model. At present, a simple mixing length type
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model is used In the analysis. In internal flow applications of this analysis,

quantitatively accurate flow simulations have been obtained with a mixing-

length approach (Refs. 5, 7, 8). The mixing-length turbulence model employed

here computes an eddy viscosity UT from the expression (Ref. 9):

UT.- = pE,2 (e~e) 1 / 2  (18)

Re

where Re is the Reynolds number, e is the mean flow rate of strain tensor

= [vU + (VU)T] (19)

and I is the mixing length determined from the empirical relationship of
McDonald and Camarata (Ref. 10) for equilibrium turbulent boundary layers:

(y) = 0.09 6b tanh[ 'y ]D (20)

0. 0 96 b

Here, y is the distance from the wall, 6b is the local boundary layer

thickness, K is the Von Karman constant (taken as 0.43), and D is a sublayer

damping factor

D = pl/2{Y aY (21)

where P is the normal probability function, a = 8, y - 23, and

y= y (T /P)1/2 (22)

with T being the local shear stress end U the viscosity of the fluid.

2.8 Governing System of Equations

A complete system of five coupled equations governing Up, S i , ,

and p is given by Eqs. (10), (12), (8), (9), and (15). For compressible flows,

Eq. (17) is added for p. The ancillary relations (5) and (18)-(22) are given

for the composite velocity and the eddy viscosity. In Ref. 6 the governing

equations are given in general orthogonal coordinates, and in Ref. 7 in

nonorthogonal coordinates.
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2.9 Numerical Method

Since techniques for obtaining the basic potential flow solution are well

known and numerous, they need not be enumerated or discussed here. Instead,

the present development concentrates on describing the numerical method used to

solve the system of governing equations. Streamwise derivative terms in the

governing equations have a form such as Up3( )/3x 3 , and because the

streamwise velocity U p is very small in the viscous dominated region near

no-slip walls, it is essential to use implicit algorithms which are not subject

to stringent stability restrictions unrelated to accuracy requirements.

Although it is possible to devise algorithms for the solution of the governing

equations as a fully coupled implicit system, such algorithms would require

considerable iteration for the system of equations treated here, and this would

detract from the overall efficiency. The present method is semi-implicit and

seeks to reduce the amount of iteration required and yet avoid the more severe

stability restrictions of explicit algorithms. The method partitions the

system of governing equations into subsystems which govern the primary flow,

the secondary flow, and the turbulence model. The primary-flow subset of

equations contains the streamwise momentum equation (plus an energy equation,

if needed). The secondary-flow subset of equations contains the secondary

vorticity equation and the scalar and vector potential equations. These

subsystems are decoupled using an ad hoc linearization in which secondary

velocity components and turbulent viscosity are lagged, and are solved

sequentially during each streamwise step.

2.10 Summary of Algorithm

The governing equations are replaced by finite-difference approximations.

Three-point central difference formulas are used for all transverse spatial

derivatives. Analytical coordinate transformations are employed as a means of

introducing a nonuniform grid in each transverse coordinate di.ection, as

appropriate, to concentrate grid points in the wall boundary layer regions.

Second-order accuracy for the transverse directions is rigorously maintained.

Two-point backward difference approximations are used for streamwise

derivatives, although this is not essential.
-9-



To solve the primary flow subsystem of viscous equations, a scalar ADI

scheme is used for the momentum equation.

Given the solution for the primary flow, the secondary flow subsystem can

be solved. First, the scalar potential equation (continuity) is solved using a

scalar iterative ADI scheme. Next, the secondary vorticity and vector

potential equations are written as a fully implicit coupled system and solved

using an iterative linearized block implicit (LBI) scheme (cf. Briley and

McDonald, Ref. 11). In selecting boundary conditions for the secondary flow

subsystem, care must be taken to ensure that the final secondary velocity

satisfies the no-slip condition accurately. In the scalar potential equation

the normal derivative of * is set equal to minus the normal component of Vs. S

This boundary condition corresponds to zero normal velocity. It is not

possible to simultaneously specify the tangential velocity, however, and thus

the Vs- and *-contributions to the secondary velocity will have a nonzero

tangential (slip) component, denoted Vt, at solid boundaries. In the coupled 0

vorticity and vector-potential equations, both the normal and the tangential

velocity component can be specified as boundary conditions, since these

equations are solved as a coupled system. By choosing (a) zero normal

velocity, and (b) minus Vt as the *-contribution to the tangential velocity, 0

the slip velocity Vt arising from the 0 calculation is cancelled, and the

composite secondary flow velocity including Vs, *, and * contributions will

satisfy the no-slip condition exactly.

A summary of the overall algorithm used to advance the solution a single

axial step follows. It is assumed that the solution is known at the n-level

x3
n (the nth transverse plane) and is desired at x3n+l.

(1) The imposed streamwise pressure gradient distribution and the vector •

field Vs are determined from an inviscid potential flow.

(2) The momentum equation is solved to determine Upn+l. For

compressible flows, pn+I is obtained from Eq. (17). 0

(3) Using values now available for pn+l and Upn+l, the scalar

potential equation (8) is solved using an iterative scalar ADI

scheme, to obtain On+l. This ensures that the continuity equation 0

is satisfied.
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(4) The equations for vorticity (12) and vector potential (9) form a

coupled system for nnn+l and *n+l which is solved as a coupled

system using an iterative LRI scheme.

(5) Values for the two components of the transverse velocity vector U5s

are computed from Eq. (3).

(6) Using the computed velocity field, the transverse pressure field is

computed from Eq. (13) by an iterative scalar ADI scheme.

(7) The eddy viscosity is updated using Eqs. (18)-(22).

2.11 Boundary Conditions for the Tip Vortex Flow Computations

Figure 2 shows a perspective view of a straight blade with NACA 0012

airfoil section and a rounded tip. For this case, the transverse coordinate

surfaces were taken normal to the chord line of an airfoil section. Figure 3

shown a cross-section of the blade tip and the computational grid at a typical

streamwise station. A computational grid that wraps around the tip was chosen

to provide adequate resolution of the tip region and a smooth grid

distribution.

The cross-sectional computational coordinate system, shown in Fig. 3, has

four boundaries where boundary conditions for the governing equations must be

specified. Inboard are boundaries AB and CD, the blade surface is boundary BC,

and the far field is boundary AD. Boundary conditions must be specified for

the streamwise velocity in the streamwise momentum equation, for the scalar

potential in the scalar potential equation, and for the vector potential and

streamwise vorticity in the coupled vector potential - streamwise vorticity

equations. The conditions that were specified for the tip vortex flow

computations are considered in this section.

The flow at the inboard boundaries AB and CD was assumed to be quasi

two-dimensional (no spanwise variation). The streamwise velocity was

extrapolated from the interior flow field, and the normal gradient of the

scalar potential was set to zero. The vector field V. was assumed to be

derived from an inviscid flow field for the geometry under consideration.

Neglecting spanwise variations, the coupled vector potential - vorticity

-11-



equations were solved as two-point boundary value problems along the inboard

boundaries. Boundary conditions for these problems were the no-slip and no

through-flow velocity conditions on the blade surface (at B and C of Fig. 3),

and the inviscid spanwise velocity and zero streamwise vorticity at the outer

boundary (at A and D of Fig. 3). Since the inviscid spanwise velocity is

included in Vs, these boundary conditions pose no special problems. The

solutions to the boundary value problems were used as function boundary

conditions on the vector potential and streamwise vorticity for the interior

tip flow field. The Inboard boundary treatment outlined above is similar to

the one proposed in Ref. 4. It allows through-flow through the inboard

boundaries, and permits these boundaries to be placed closer to the tip.

The boundary condition along boundary BC, the blade, was the no-slip

condition on a solid surface. To satisfy this condition, the normal gradient

of the scalar potential (the normal velocity) was set to cancel the normal

component of Vs. In the coupled vector potential and vorticity equations the

normal component of the rotational velocity was set to zero, and the tangential

component was set equal and opposite to the tangential component of the

velocity generated by the scalar potential and the vector field Vs. These

conditions allowed an implicit specification of the vector potential and the

vorticity on the no-slip boundary (as discussed in Section 2.10). The

resultant secondary velocity field satisfies the no-slip conditions on the

boundary. The streamwise velocity was also set to zero at the solid boundary.

Far field conditions were specified on boundary AD. The streamwise 0

velocity was extrapolated from the interior flow field. The scalar potential

was set to a constant, so that the tangential component of the *-contribution

to the irrotational velocity was zero. This condition allowed outflow through

the boundary due to the displacement effect of the boundary layers on the 0

blade. The vector potential was varied linearly between its values at A and D

as obtained from the inboard boundary conditions described above, and the

streamwise vorticity was set to zero. Because VS was assumed to be an

inviscid cross-flow velocity field, the angle of incidence of the flow and the 0

global effect of the geometry were included automatically.

It should be noted that the far field boundary condition was the main

reason for including Vs in the secondary flow velocity decomposition. In

previous tip vortex calculations (Refs. 2-4), the effect of the angle of _

incidence of the flow had been included in the boundary condition on the vector
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potential, and the effect of the global geometry had not been taken into

account. This effect is important because of the proximity of the outer

boundary to the tip. As a result, the tip vortex in those previous

calculations was driven too strongly by the outer boundary conditions. The

present boundary conditions avoid this problem, and permit the outer boundary

to be relatively close to the blade surface.

3. RESULTS

To quantitatively assess the capability of the forward-marching analysis

to compute the tip vortex generation process, results of the computations are

compared with experimental data for tip vortex generation. Such data are not

widely available, but do exist (e.g. Gray et al. (Ref. 1), Francis and Kennedy

(Ref. 12), and Chigier and Corsiglia (Ref. 13)). In the present study, two

flow cases for tip vortex generation on a model helicopter blade in hover are

studied, for which data at pitch angles of 6.180 and 11.40 are given by Gray et

al. (Ref. 1). A third case addresses the computation of flow downstream of the

blade. The blade is straight, with an NACA 0012 untwisted airfoil section and

a rounded tip (cf. Fig. 2). The important geometric and flow parameters are:

Tip radius/blade chord - 4.8

Pitch angle - 6.180 and 11.40

Reynolds number (based on tip velocity and chord) = 736000 S

Mach number (based on tip velocity) - 0.25

The experimental data consist of static pressure measurements on the blade

surface in the tip region. The calculations were performed in two steps.

First an inviscid (potential) flow field was generated. Then the viscous flow

analysis was performed using the streamwise pressure gradient and cross-plane

velocity vector field obtained from the inviscid flow field.

3.1 The Inviscid Flow Calculations

The inviscid flow field was generated using a panel method code developed

by Hess (Ref. 14). The calculations were done for a non-rotating blade. Since

the region of interest was the tip region, the panel code was applied to a

-13-



symmetric "wing" with a half-span of 3 c (where c denotes the blade chord), at

angles of incidence of 6.18* and 11.4. Increasing the wing span did not

appreciably alter the inviscid flow field near the tip. 1280 panels were used

on the lifting part of the wing (with a higher panel density near the leading

edge and the tip), 40 panels on the non-lifting tip-body, and 320 panels in the

wake. Figures 4 and 5 show the resulting chordwise and spanwise pressure

distributions on the blade, as obtained from the velocities computed at the

panel centers. In these figures, x is a chordwise coordinate (x/c - 0 at the

leading edge and x/c - 1 at the trailing edge), while y is a spanwise

coordinate (y/c - 0 at the symmetry plane and y/c - 3 at the tip). Two

problems arose in the computation of the inviscid field:

(i) Since the panel method used is a first-order method, the inviscid

velocity field is not smooth near the blade surface.

(ii) The inviscid flow around the tip is nonunique, because it is not known

a priori where the wake leaves the tip body. Since no empirical

information is to be used in the calculations, the ambiguity cannot be

resolved. For the present calculation, the tip half-body of revolution

is treated as a nonlifting body. As a consequence, the transverse

inviscid velocities around the tip are large, especially in the

vicinity of the trailing edge, leading to unrealistic pressures.

The above problems imply that the computed inviscid field will not be accurate

close to the blade surface. A short distance away from the surface, however,

the inviscid field is well-behaved. And since the inviscid field is used only

to generate an approximate streamwise pressure gradient and an outer boundary

cross-plane velocity vector field for the viscous flow analysis, it is

acceptable to ignore the inaccurate part of the inviscid field, and to use

interpolation to regenerate a smooth field near the blade surface. Figure 6

shows contours of the inviscid pressure field so obtained on the suction side

of the blade tip surface. The left-most part of this figure shows the location

of both the region on the suction surface on which the computational results

are presented and the innermost rectangle in which experimental data are

available (data taken closer to the leading edge are not included in the

present data comparison). The latter region is also indicated by a dashed
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rectangle in the middle part of Fig. 6, which shows contours of the computed

inviscid pressure distribution. The comparison with the experimental data from

Gray et al. (Ref. 1) shows clearly that the inviscid field does not contain a

rip vortex, and that the viscous pressure relief near the trailing edge of the

blade is missing.

3.2 The Viscous Flow Calculation for 6.18* Incidence

The viscous flow calculation was performed in the tip region of the blade

described above. As mentioned in Section 2.11, the marching direction

coincided with the chordwise direction. Figure 2 shows a perspective view of

the blade geometry near the tip, and Fig. 3 shows the cross-section of the

blade tip and the computational grid at a typical streamwise station. This

latter figure also shows the extent of the computational domain: the inboard

boundaries (AB and CD in Fig. 3) were located at a distance 0.4 c from the tip,

while the outer boundary (AD in Fig. 3) was located a distance 0.3 c away from

the blade surface.

A computational grid of 120 streamwise stations and a 47x40 cross-plane

grid was used (totaling 225,600 grid points). Grid points were clustered in

regions of high flow gradients, such as near the blade surface and in the tip

region (cf. Fig. 3). The computation was started at a distance of 0.15 c from

the leading edge of the blade with an assumed initial boundary layer thickness

of 0.003 c. Given this boundary layer thickness, an initial streamwise

velocity distribution was constructed using a standard boundary layer profile.

The marching scheme was then applied to the initial station without

updating the streawise velocity, to obtain a consistent set of initial

distributions of the dependent variables, from which the actual marching

procedure was started. The last station was at 0.06 c from the trailing edge

of the blade. The computer run time for this particular tip vortex flow field

computation was about 7 minutes on a CRAY-1 computer system with a partially

vectorized code. Results of the computation, which was performed under the

operating conditions specified above, but for a non-rotating blade, are shown

in Figs. 7-11.

Figure 7 shows the development of the tip vortex computed by the code in

terms of streamwise velocity contours. Computations from four streamwise

stations (x/c - 0.57, 0.74, 0.84 and 0.94, where x is the distance from the
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leading edge) were chosen to display the development of the tip vortex in the

tip region, which extends 0.11 c in the spanwise direction. The basic flow

mechanisms that result in the generation of the tip vortex have been described

by Govindan et al. (Ref. 3). These mechanisms are the transport of low

momentum fluid from the pressure side boundary layer to the suction side by the

transverse velocity, the accumulation of this low momentum fluid on the suction

side of the tip region, and the roll-up of this accumulated fluid into the tip

vortex.

That, indeed, the flow in the tip region rolls up into the tip vortex is

clearly visualized by the vector plots of the transverse velocity field in the

tip region (Fig. 8). The large transverse velocities (up to about 80% of the

free stream velocity at x/c = 0.94) around the tip that convect the low

momentum fluid from the pressure side to the suction side are also seen.

Figure 9 shows a vector plot of the cross-plane velocities at x/c - 0.94 in the

full computational domain. The flow through the inboard boundaries (AB and CD

in Fig. 3) is clearly visible, indicating the effectiveness of the inboard

boundary conditions described in Section 2.11. Contour plots of the computed

tranverse pressure fields are shown in Fig. 10. The low pressure region near

the tip can be seen clearly, as can the development of a low pressure region 0

associated with the tip vortex. This low pressure region would determine the

cavitation characteristics of the tip flow field.

At this point, it should be noted that the tip vortex generation process

has been calculated from a set of three-dimensional, viscous flow equations

which have a no-slip condition at the blade surface. The vortex generation and

roll-up is a result of the secondary flow separation and can be analyzed from a

consideration of the basic physical phenomena without resorting to empirical

models. •

3.3 Data Comparison for 6.180 Incidence

Figure 11 shows a streamwise contour plot of the computed pressure field

on the suction side of the blade. This pressure field is compared with the

inviscid pressure field discussed in Section 3.1 and with the experimental data

of Gray et al. (Ref. 1). The following observations can be made:
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(1) The computed viscous flow field is qualitatively correct.

(ti) There is quantitative agreement with the experimental data in the

inboard pressure distribution, the spanwise variation of the pressure

near the inboard boundary, and the pressure variation across the tip

vortex, although this vortex forms too far aft on the blade.

These observations are in sharp contrast with the observations made for the

inviscid flow field (see Section 3.1). Clearly, the forward-marching analysis

is capable of predicting not only the qualitative features of the tip vortex

generation process, but also the quantitative features. Several aspects of the

present analysis, however, need refinement:

(a) Initial conditions: In essence, the initial cond4 tions are obtained by

adding a boundary layer profile to the inviscid velocity field at the

first station (see Section 3.2). The spanwise variation of the initial

boundary layer thickness has not been accounted for.

(b) Grid resolution: To capture the turbulent boundary layer (which is very

thin, especially on the pressure side of the blade and on the tip), a

very fine mesh is needed near the blade surface. When the tip vortex

forms, a fine grid is also required in the vortex itself. Although the

present grid is relatively fine (cf. Fig. 3), it is still somewhat of a S

compromise between the above requirements. A solution-adaptive grid

generation technique may be required to accommodate a sufficient number

of grid points in the boundary layer (whose thickness varies both in

chordwise and in spanwise direction) and in the tip vortex without a

substantial increase in the total number of grid points.

(c) Turbulence model: As described in Section 2.7, the turbulence model

used is an algebraic eddy viscosity model based on an appropriate flow

field length scale. Although the turbulence model determines the state

of the boundary layer being swept around the tip to create the tip

vortex, this flow is wall flow where the length scale is known to be

proportional to distance from the wall. Once the tip vortex separates

from the wall, the major effect may be secondary flow rather than
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turbulent effects per se. Therefore, the simple turbulence model may be

appropriate. A more complex model could, however, be included in the

current computer code.

(d) Streamwise pressure gradient: As mentioned in Section 3.1, the present

inviscid flow field lacks smoothness and accuracy in the vicinity of the

blade surface. As a consequence, the streamwise inviscid pressure

gradient used as input to the viscous flow analysis is not as good as it

could be. The use of a higher-order panel method and a refined tip

treatment may improve the situation.

(e) Rotation: The calculations were performed for a non-rotating blade.

Previous experience (Ref. 3) indicates that the effect of rotation on

the tip vortex generation is small (though not unnoticable). The main

problems are the estimate of the streamwise inviscid pressure gradient

and the far-field boundary conditions.

Preliminary studies have indicated that the above-mentioned aspects of the

analysis do not have a strong effect on the computation of the tip vortex

generation process, but may be important to improve the quantitative agreement

with the experimental data.

3.4 Computed Results for 11.40 Incidence

In addition to data for a blade pitch angle of 6.180, Gray et al. (Ref. 1)

provides experimental data for a blade pitch angle of 11.4% . Therefore, a
second calculation was done, similar to the first one, but for the

(non-rotating) blade at an angle of incidence of a - 11.40 instead of

a - 6.180. The computation was halted at a distance of 0.11 c from the

trailing edge of the blade, because streamwise separation was encountered

further downstream. Results of this computation are shown in Figs. 12-15.

Figure 12 shows a streamwise contour plot of the computed viscous pressure

field on the suction side of the blade, compared with the (computed) inviscid

pressure distribution and the experimental data of Gray et al. (Ref. 1). The
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agreement of the computed results with the experimental data is similar to the

one discussed in Section 3.3 for the 6.180 angle of incidence case. A

comparison of Figs. 11 and 12 shows that the tip vortex is much stronger than

in the previous case, which is also illustrated in Figs. 13-15. Figure 13

shows a vector plot of the transverse velocity field, while Figs. 14 and 15

show contour plots of the streamwise velocity, the inviscid pressure

coefficient, and the viscous pressure coefficient in the tip region at the

streamwise station x/c = 0.89. The low pressure region that is associated with

the tip vortex is clearly visible, and a comparison with the inviscid pressure

distribution once again shows that the inviscid field does not contain a tip

vortex.

The above results reinforce the conclusions drawn in Section 3.3, and

build up confidence in the results obtained from the forward marching analysis.

3.5 Additional Results Downstream of the Trailing Edge
0

A natural continuation of the calculations discussed in the previous

sections would be to continue the computation downstream of the blade trailing

edge. A general capability would allow for computation of the flow downstream

of swept trailing edges, and data is available for this type of configuration. S

Although the capability for treating swept trailing edges was under

investigation in a related program, this capability was not completed for use

in the present study. Consequently, the present study considers a test case

having an unswept trailing edge. To demonstrate the capability of the •

forward-marching procedure to compute the development of the tip vortex

downstream of an unswept trailing edge, a calculation was performed for the

blade described in Section 3.2, at an angle of incidence of 6.180. The

inviscid flow field was not used in this calculation; the streamwise pressure

gradient was set to zero, and the far field boundary conditions were included

in the vector potential p. A simple turbulence model was used in the region

downstream of the trailing edge. Fig. 16 shows the results of this

calculation.

Streamwise velocity contour plots, shown at three streamwise stations

(x/c = 1.0, 1.7, and 2.5), illustrate the dissipation of the vortex.

It should be emphasized that these results are of a qualitative nature.

To obtain results that can be compared with experimental data, it is necessary

to:
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Mi) Include the inviscid streamwise pressure gradient in the streamwise

momentum equation,

(ii) Include the effect of the inviscid transverse plane velocity

components in the far field boundary conditions (by including these

velocity components in the transverse plane velocity decomposition),

(iii) Choose an appropriate turbulence model.

The first two aspects require additional work on the interface between the

inviscid flow solver and the forward marching scheme in the region downstream

of the blade trailing edge. As far as the third aspect is concerned,

experience with the use of different turbulence models has shown that although 0

the turbulence model does not greatly affect the formulation of the tip vortex,

it does play an important role in the speed with which the tip vortex

dissipates once it has formed and has separated from the wall. Therefore, a

proper turbulence model should be chosen for the region downstream of the blade -

trailing edge before a data comparison is performed.

4. CONCLUSIONS

Previous work (Refs. 2-4) has shown the feasibility of utilizing a

three-dimensional forward marching analysis for the tip vortex generation

problem. The present analysis has clearly demonstrated the capability of the

forward-marching procedure to compute the quantitative features of the tip 0

vortex flow field without the use of empirical information. Comparison with

experimental data has shown good agreement. It is evident that the procedure

can compute the low pressure region in the flow associated with the tip vortex,
and can help in identifying regions of the flow field that may be susceptible

to cavitation.

The computations are economical compared to computing solutions of the

full Navier-Stokes equations for tip vortex flow fields, which makes the
procedure suitable for the design and analysis of ship propeller blades. S

Future efforts are aimed at refining the current analysis, and at building

a high level of confidence in the results obtained from the analysis, by making

additional quantitative comparisons of the computations of the tip flow field

with experimental data.
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